Anasayfa
İletişim
Sepetim
0
Ürün
Kategoriler
Anasayfa
Akademik
Tourism / Turizm
Foreign Languages / Yabancı Dil
Chemistry / Kimya
Computer / Bilgisayar
Economics-Finance / Ekonomi-Finans
Educational Science / Eğitim Bilimleri
Engineering / Mühendislik
History / Tarih
Business-Management / İşletme
Mathematics / Matematik
Philosophy / Felsefe
Physics / Fizik
Politics / Politika
Psychology / Psikoloji
Sociology / Sosyoloji
Yabancı Dil Öğrenimi
Almanca
Fransızca
İngilizce
İspanyolca
İtalyanca
Rusça
Sözlükler
Sınavlara Hazırlık
TOEFL
SAT
CFA
Diğer
GMAT
IELTS
GRE
Kişisel Gelişim ve İş Hayatı
Tıp Kitapları
Hikaye Roman
Üniversite Ders Kitapları
İletişim
Anasayfa
>
Akademik
>
Engineering / Mühendislik
>
Pandas for Everyone Python Data Analysis 2nd Ed. Daniel Y. Chen
< < Önceki Sayfaya Dön
Yeni Ürün
Fırsat Ürünü
Pandas for Everyone Python Data Analysis 2nd Ed. Daniel Y. Chen
İndirim Oranı
:
%
43
İndirim
Sepetteki Son Fiyat
Fiyat
:
₺1.342,25
İndirimli
:
₺769,14
Sepet Fiyatı
:
Kritik Stok
Telefonla Sipariş
Favorilere Ekle
İstek Listeme Ekle
Karşılaştır
Fiyat Düşünce Haber Ver
Kargo Bedava
Gelince Haber Ver
Artır
Azalt
Ürün stoklarımızda kalmamıştır.
Tavsiye Et
Yorum Yaz
Ürün Özellikleri
Yorumlar
(0)
Ödeme Seçenekleri
Ürün Önerileri
Today, analysts must manage data characterized by extraordinary variety, velocity, and volume. Using the open source Pandas library, you can use Python to rapidly automate and perform virtually any data analysis task, no matter how large or complex. Pandas can help you ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple data sets. Pandas for Everyone, 2nd Edition, brings together practical knowledge and insight for solving real problems with Pandas, even if you’re new to Python data analysis. Daniel Y. Chen introduces key concepts through simple but practical examples, incrementally building on them to solve more difficult, real-world data science problems such as using regularization to prevent data overfitting, or when to use unsupervised machine learning methods to find the underlying structure in a data set. New features to the second edition include: Extended coverage of plotting and the seaborn data visualization library Expanded examples and resources Updated Python 3.9 code and packages coverage, including statsmodels and scikit-learn libraries Online bonus material on geopandas, Dask, and creating interactive graphics with Altair Chen gives you a jumpstart on using Pandas with a realistic data set and covers combining data sets, handling missing data, and structuring data sets for easier analysis and visualization. He demonstrates powerful data cleaning techniques, from basic string manipulation to applying functions simultaneously across dataframes. Once your data is ready, Chen guides you through fitting models for prediction, clustering, inference, and exploration. He provides tips on performance and scalability and introduces you to the wider Python data analysis ecosystem. Work with DataFrames and Series, and import or export data Create plots with matplotlib, seaborn, and pandas Combine data sets and handle missing data Reshape, tidy, and clean data sets so they’re easier to work with Convert data types and manipulate text strings Apply functions to scale data manipulations Aggregate, transform, and filter large data sets with groupby Leverage Pandas’ advanced date and time capabilities Fit linear models using statsmodels and scikit-learn libraries Use generalized linear modeling to fit models with different response variables Compare multiple models to select the “best” one Regularize to overcome overfitting and improve performance Use clustering in unsupervised machine learning
Havale ile Ödeme
₺769,14
cultureSettings.RegionId: 0 cultureSettings.LanguageCode: TR