Anasayfa
İletişim
Sepetim
0
Ürün
Kategoriler
Anasayfa
Akademik
Tourism / Turizm
Foreign Languages / Yabancı Dil
Chemistry / Kimya
Computer / Bilgisayar
Economics-Finance / Ekonomi-Finans
Educational Science / Eğitim Bilimleri
Engineering / Mühendislik
History / Tarih
Business-Management / İşletme
Mathematics / Matematik
Philosophy / Felsefe
Physics / Fizik
Politics / Politika
Psychology / Psikoloji
Sociology / Sosyoloji
Yabancı Dil Öğrenimi
Almanca
Fransızca
İngilizce
İspanyolca
İtalyanca
Rusça
Sözlükler
Sınavlara Hazırlık
TOEFL
SAT
CFA
Diğer
GMAT
IELTS
GRE
Kişisel Gelişim ve İş Hayatı
Tıp Kitapları
Hikaye Roman
Üniversite Ders Kitapları
İletişim
Anasayfa
>
Akademik
>
Computer / Bilgisayar
>
Training Data for Machine Learning: Human Supervision from Annotation to Data Science Anthony Sarkis
< < Önceki Sayfaya Dön
Training Data for Machine Learning: Human Supervision from Annotation to Data Science Anthony Sarkis
İndirim Oranı
:
%
43
İndirim
Sepetteki Son Fiyat
Fiyat
:
₺1.265,00
İndirimli
:
₺725,00
Sepet Fiyatı
:
Kritik Stok
Telefonla Sipariş
Favorilere Ekle
İstek Listeme Ekle
Karşılaştır
Fiyat Düşünce Haber Ver
Gelince Haber Ver
Artır
Azalt
Ürün stoklarımızda kalmamıştır.
Tavsiye Et
Yorum Yaz
Ürün Özellikleri
Yorumlar
(0)
Ödeme Seçenekleri
Ürün Önerileri
Your training data has as much to do with the success of your data project as the algorithms themselves because most failures in AI systems relate to training data. But while training data is the foundation for successful AI and machine learning, there are few comprehensive resources to help you ace the process. In this hands-on guide, author Anthony Sarkis--lead engineer for the Diffgram AI training data software--shows technical professionals, managers, and subject matter experts how to work with and scale training data, while illuminating the human side of supervising machines. Engineering leaders, data engineers, and data science professionals alike will gain a solid understanding of the concepts, tools, and processes they need to succeed with training data. With this book, you'll learn how to: Work effectively with training data including schemas, raw data, and annotations Transform your work, team, or organization to be more AI/ML data-centric Clearly explain training data concepts to other staff, team members, and stakeholders Design, deploy, and ship training data for production-grade AI applications Recognize and correct new training-data-based failure modes such as data bias Confidently use automation to more effectively create training data Successfully maintain, operate, and improve training data systems of record
Havale ile Ödeme
₺725,00
cultureSettings.RegionId: 0 cultureSettings.LanguageCode: TR